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Abstract

This paper provides an overview of the main theorems regarding metrization of topo-

logical spaces. While every metric space can be considered as a topological space with

open balls as open sets and closed balls as closed sets, it is important to determine

the conditions under which a metric can be defined on a topological space. The pa-

per establishes that normality is a necessary but not sufficient condition for metriza-

tion. Additionally, the Urysohn metrization theorem is presented as a sufficient but

not necessary condition for metrization. Finally, the paper also presents the two main

theorems, Smirnov Theorem and the Nagata-Smirnov theorem, which provide both

necessary and sufficient conditions for a topological space to be metrizable.



0.1 Preliminaries

The objective of this paper is to present proofs for the three fundamental metriza-

tion theorems. Our approach and definitions are based on the work of [1]. To start, we

will establish some key concepts that will be frequently referenced in our proofs.

Definition 1. Let X be a topological space. X is said to be Hausdorff if ∀ x, y in X such that

x ̸= y, there exist open sets Ux containing x and Vy such that Ux ∩ Uy = ∅.

Definition 2. Let X be a topological space. X is said to be regular if for any closed set A ∈ X

and ∀x in X − A, there exists disjoint open sets Ux containing x and VA containing A.

Definition 3. Let X be a topological space. X is said to be normal if for any two disjoint closed

sets A and B ∈ X, there exist disjoint open sets UA containing A and VB containing B.

Definition 4. Let X be a topological space. X is said to be second countable if it has a

countable basis.

Theorem 5. Every second countable regular space is normal.

Proof. Let A and B be two disjoint closed sets in a second countable regular space

X. Given that X is regular, for any arbitrary x ∈ A, there exists an open set U con-

taining x and an open set W ⊃ B such that U ∩ W = ∅. Consider an open set Vx

containing x such that its closure Vx ⊂ U. It follows that Vx ∩ B = ∅. The collection

(Vx)x∈A is an open cover of A not necessarily countable. From second countability, X

has a countable basis B with basis elements that we denote (On)n∈I⊂N. Since Vx can

be written as the union of some elements of the basis, there exists some n0 such that

x ∈ On0 ⊂ Vx. The collection of such On0 ∀x ∈ A form a countable open cover of A.

Also Ono ∩ W = ∅.

To simplify the notation in the remaining part of the proof, we denote by (Un)n∈N

the countable collection of basic open sets covering A as constructed above, and let

(Wn)n∈N a countable collection of basic open sets covering B constructed similarly.

For each n ∈ N, Un and Wn are disjoint since each Un is some Ono and each Wn ⊂ W.

Also
⋃

n∈N Un ⊃ A and
⋃

n∈N Wn ⊃ B are open sets but not necessarily disjoint. To
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address this, define:

U′
n = Un −

n⋃
i=1

W i

W ′
n = Wn −

n⋃
i=1

Ui

Clearly, U′
n and W ′

n are open sets as each is the difference of an open set and a finite

union of closed sets which is closed. (U′
n)n∈N covers A since for each x ∈ A, x belongs

to some Un but to none of Vn. Similarly, (V′
n)n∈N covers B. Define U′ to be

⋃
n∈N U′

n

and W ′ to be
⋃

n∈N W ′
n, which contain respectively A and B.

We conclude the proof by showing that U′ and W ′ are disjoint. Assume there exists

x ∈ U′ ∩W ′ , then x ∈ U′
j ∩W ′

k for some j, k. Without loss of generality, suppose j ≤ k.

It follows from the definition of U′
j that x ∈ Uj and from the definition of W ′

k that x /∈

Uj,and therefore not in x /∈ Uj. We have x ∈ Uj and x /∈ Uj which is a contradiction.

We have constructed disjoints open sets U′ and W ′containing respectively closed the

arbitrary disjoint closed set A and B. As a result, X is normal.

Definition 6. A function d : X × X → R+ is said to be a metric (distance function) if the

followings holds:

1. d(x, y) = 0 ⇐⇒ x = y for all x, y ∈ X (nondegeneracy)

2. d(x, y) = d(y, x) ∀x, y ∈ X (symmetry)

3. d(x, y) ≤ d(x, z) + d(y, z) ∀x, y, z ∈ X (triangular inequality)

A metric space (X, d) is a set X with a metric d. Any metric space has an induced

topology where the open balls generate the open sets of the topology. However, the

converse need not be true as we cannot necessarily define a distance function on any

topological space. A topological space is said to be metrizable if a metric can be de-

fined on such space.

Example. On the real line with the usual topology, we can define a metric d such

that ∀x, y ∈ R, d(x, y) = |x − y|. This satisfies the definition of a metric and (R, d) is a

metric space. We can similarly define an euclidean distance on Rn.

Theorem 7. Every metrizable space is normal.
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Proof. Let X be a metrizable space with metric d. Let A and B be two disjoint

closed sets in X. ∀a ∈ A and b ∈ B, there exist for some ra > 0 and rb > 0 disjoint

open balls B(a, ra) and B(b, rb). The statement remains true for B(a, ra
2 ) and B(b, rb

2 ).

(B(a, ra
2 ))a∈A and (B(b, rb

2 ))b∈B are respectively open covers of A and B, in other words,

A ⊂ U =
⋃

a∈A B(a, ra
2 ) and B ⊂ V =

⋃
b∈B B(b, rb

2 ). U and V are open sets as unions

of open balls. To prove that they are disjoint, assume that x ∈ U ∩ V. There exist

some a ∈ A and b ∈ B such that x ∈ B(a, ra
2 ) and x ∈ B(b, rb

2 ). By triangular inequal-

ity, d(a, b) ≤ d(a, x) + d(x, b) < ra
2 + rb

2 . Suppose ra ≤ rb, it follows that d(a, b) < rb

contradicting the fact that B(a, ra) and B(b, rb) are disjoints. The same contradiction

happens if ra ≥ rb. This shows that U and V are disjoint open sets containing respec-

tively A and B.

The previous theorem shows that normality is a a necessary but not sufficient con-

dition for metrization. The next set of examples from [1] illustrates that normality or

regularity is only necessary but not sufficient.

Example.

1. The real line (with the usual topology) is an example that satisfies all the separa-

bility axioms and is metrizable.

2. The Sorgenfrey line (real line with topology generated by half-open sets [a, b) )

satisfies all the separability axioms (T1, Hausdorff, regular, completely regular

and normal). However, it is not second countable therefore not metrizable. This

shows normality is not sufficient.

3. The Sorgenfrey plane is not normal therefore not metrizable. This illustrate nor-

mality as a necessary condition.

0.2 Urysohn Metrization Theorem

This section focuses on the first important metrization theorem: the Urysohn Metriza-

tion theorem which provides sufficient but not necessary conditions for metrizability.

In order to prove this theorem, lets state without proof the Urysohn Lemma.
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Theorem 8 (Urysohn lemma). Let X be a normal space; let A and B be disjoints closed

subsets of A. Let [a, b] ⊂ R be a closed interval. Then there exists a continuous map

f : X −→ [a, b]

such that f (x) = a ∀x ∈ A and f (x) = b ∀x ∈ B.

Definition 9. A space X is said to be completely regular if ∀x0 ∈ X and any closed A ⊂ X

not containing A, there exists a continuous function f : X −→ [0, 1] such that f (x0) = 1

and f (x) = 0 ∀x ∈ A.

One important result of the Urysohn lemma is that every normal space is com-

pletely regular and completely regular spaces are regular.

Theorem 10 (Urysohn Metrization Theorem). Every regular second countable space is

metrizable.

It is important to note that this theorem can be stated equivalently as any second

countable normal space is metrizable. This is because every regular second countable

space is normal.

Proof. Let X be a regular second countable space. We will prove the theorem by

embedding X in a metrizable space, and so X is homeomorphic to a subspace Y of

the metrizable space, and hence metrizable. One of the two ways is to either take

Y = [0, 1]ω with the product topology or Y = [0, 1]ω the topology induced by the

uniform metric defined by:

ρ̄(x, y) = sup
i∈ω

{|xi − yi|}

where x = (x1, x2, · · · ), y = (y1, y2, · · · ) and ω some countable index set.

Version 1: In this version of the proof, we show X is homeomorphic to the Y = [0, 1]ω

with the product topology.

First, we show there exist a countable collection of continuous functions fn : X −→ [0, 1] such

that ∀x0 ∈ X and for any neighborhood U of X, there exists an index n such that fn vanishes

outside U.

Given that X is second countable and regular, X is normal by Theorem 4, and there-

fore completely regular by Urysohn lemma. This guarantees the existence of a function
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such that f (x0) = 1 and f vanishes outside any neighborhood U of x. However, the

collection of such functions for each pair (x0, U), is not countable. We will make use

of the fact that it is second countable to achieve this.

Let B be a countable basis of X, by regularity, we can find Bn and Bm in B such that

Bn ⊂ Bm. We construct a function gn,m similar to f , defined by: gn,m : X −→ [0, 1] such

that gn,m(B̄n) = 1 and gn,m(X − Bm) = 0. Taking any arbitrary x0 and any neighbor-

hood U of x0, there exists Bn such that B̄n ∈ U and x0 ∈ Bn , it follows that gn,m(x0) = 1

and gn,m vanishes outside Bn, and therefore vanishes outside U. Moreover such a col-

lection of gn,m is countable since Z+ × Z+ is countable. We rearrange the index and

denote gn,m by fn.

Next, Given the functions fn, we consider the product topology on Rω and define a map

F : X −→ Rω by F(x) = ( f1(x), f2(x) . . . ) and show F is an embedding.

F is a continuous map since each fn is continuous and Rω has the product topology.

Considering two arbitrary element x and y in X, there exists an index N such that

fN(x) > 0 and fN(y) = 0. It follows that F(x) ̸= F(y), and therefore F is injective.

We only need to show F is homeomorphic unto its image F(X) that we denote by Z.

Since F is continuous and injective, F defines a bijection from X to F(X) = Z. To show

F is an homeomorphism from X to Z, it is enough to show for each U open in X, F(U)

is open in Z.

Let x0 be an arbitrary point in X and U an open set containing x0. We denote by

z0 = F(x0). There exist an index N such fN(x0) > 0 and fN vanishes outside U. Let

V = π−1
N ((0, ∞)) where πN is a projection of Rω to its N-th component . V is open in

Rω as the inverse image of an open set by a projection πN. We denote by W = V ∩ Z.

W is open by definition of subspace topology. To show F(U) is open, it is enough to

show that z0 = F(x0) ⊂ W ⊂ F(U) , and therefore F(U) would be open in Rω.

First z0 ∈ W since πN(z0) = πN(F(x0)) = fN(x0) > 0, and so z0 ∈ V. Therefore,

z0 ∈ W = V ∩ Z. Next, we show W ⊂ F(U). Let x ∈ W, z = F(x) for some x ∈ X.

πN(z) = πN(F(x)) = fN(x) > 0 (by definition of V) and vanishes outside U. If fol-

lows that x ∈ U implying z = F(x) is in F(U). This shows that for any open U ⊂ X,

F(U) is open in Z = F(X). X is therefore metrizable since it is homeomorphic to the

subset Y = [0, 1]ω of the metrizable space Rω with the product topology.
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Version 2: This version of the proof is pretty similar to the previous one, except this

time, X will be embedded in [0, 1]ω with the metric defined by ρ̄(x, y) = sup {|xi − yi|}

with x = (x1, x2, . . . ) and y = (y1, y2, . . . ) .

The construction of the sequence of function fn is the same. However, this time, we

want fn(x) < 1/n. This is obtained by dividing each fn from the first version by n. As

previously, we define the function F : X −→ [0, 1]ω by F(x) = ( f1(x), f2(x), · · · ) and

claim F is an embedding on [0, 1]ω with the metric ρ̄.

First F is injective as established in the version 1 proof. The statement that F is an open

map (carries open sets to open sets) remains true as the topology induced by the met-

ric ρ̄ on [0, 1]ω is finer (larger) than the product topology. The only thing we need to

prove for the embedding to hold true is the continuity of F as this is not guaranteed

by the fact that each fn is continuous as it was the case with the product topology.

To prove continuity, let x0 be arbitrary in X. To show F is continuous, we need to show

that ∀ϵ > 0, there exists a neighborhood U of x0, such that:

x ∈ U =⇒ ρ̄(F(x0), F(x)) < ϵ

First we choose N large enough, say N > 2/ϵ. It follows 1/N < ϵ/2. For each n < N,

there exists, by continuity of each fn, a neighborhood Un of x0 such that ∀x ∈ Un,

| fn(x)− fn(x0)| < ϵ/2. Let U = ∩N
n=1Un; x ∈ U.

If n ≥ N then | fn(x)− fn(x0)| ≤ 2/n ≤ 2/N < ϵ. We denote such neighborhood of x

by V.

On U ∩ V, | fn(x)− fn(x0)| < ϵ for all n ∈ N. It follows that U ∩ V is a neighborhood

of x0 such that x ∈ U ∩ V implies ρ̄(F(x0), F(x)) = sup {| fn(x)− fn(x0)|} < ϵ which

concludes the proof.

The second version proved something stronger. We state it here as the following theo-

rem.

Theorem 11 (Embedding Theorem). Let X be a T1 space. Suppose there exists a function
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( fn)n∈ω where ω is the set of indexes f defined from f : X −→ R such that ∀x0 ∈ X, there

exists a neighborhood U of x0 such that f (x0) > 0 and f vanishes outside U. Then the function

F : X −→ Rω defined by F(x) = ( fn(x))n∈ω is an embedding of X in Rω. Moreover, if f

maps X into [0, 1] then F embed X into [0, 1]ω

0.3 Nagata-Smirnov Metrization Theorem

From first previous section, it was observed that regularity or normality are nec-

essary condition for metrizability. The section two showed that the Urysohn theorem

provides a sufficient condition but the assumption of second countability is not really

needed to assure measurably. Therefore, a weaker condition that is both necessary

and sufficient is required. The Nagata-Smirnov Metrization Theorem replaces sec-

ond countability with locally countably finite basis, which is a weaker condition. The

proof of the Nagata-Smirnov theorem follows a similar pattern to that of the Urysohn

metrization theorem. We begin by defining some important notion that will be used

in the Nagata-Smirnov theorem.

Definition 12. A collection A of subsets of a topological space X is said to be locally finite if

∀x ∈ X, there exists a neighborhood of x that intersects only finitely many elements of A.

Definition 13. A collection of subsets B of a topological space X is said to be countably

locally finite if it can be written as a countable union of collections Bn, each of which is

locally finite.

Definition 14. Let A be a collection of subsets of a topological space X. A collection B is said

to be a refinement of A if ∀B ∈ B, there exists A ∈ A such that B ⊂ A. The refinement is

open if the elements of B are open set and closed if the elements of B are closed.

Lemma 15. Let X be a metrizable space and A an open cover of X. There is an open covering

B of X refining A that is locally countably finite.

Proof. The proof provides us with an algorithm of constructing a refinement from

any cover of a metrizable set.

Let A be the collection of open sets (Ai)i∈I that covers X. Note that the index set I is

not necessarily countable. We can however order the index set creating therefore an
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order in the Ais. We define:

Tn(Ai) = Sn(Ai)−
⋃
j<i

Aj

where Sn(Ai) = {x | B(x, 1/n) ⊂ Ai} is the subset of Ai obtained by "shrinking" Ai a

distance 1/n. The sets Tn(Ai) are separated by a distant at least 1/n ( i.e taking i ̸= j,

∀x ∈ Tn(Ai) and ∀y ∈ Tn(Aj), d(x, y) > 0).

Next we define En(Ai) by expanding slightly Tn(Ai). Specifically, let En(Ai) be the

1/3n-neighborhood of Tn i.e. En(Ai) be the union of open balls B(x, 1/3n) for x ∈

Tn(Ai). The sets En(Ai) are separated by a distance of at least 1/3n.

Let’s define

En = {En(Ai) | Ai ∈ A }.

En is a refinement of A since each En(Ai) ⊂ A ∈ Ai. Also En is locally finite since

any arbitrary x ∈ X, there exist a neighborhood that intersects finitely many elements

of En. In our case, the 1/6n-neighborhood of x B(x, 1/6n) intersect at the most one

element in En since each element En(Ai) are separated from each other by a distance

of at least 1/3n. It only remains to show it covers X and is countable. Unfortunately,

En does not cover X.

We then define:

E =
⋃

n∈N

En

Such collection is countably locally finite, we also claim it covers X. To prove this, we

will show that each x ∈ X belongs to some element in E .

For any arbitrary x ∈ X, there is an element Ai ∈ A that contains x. We can reorder

the elements such that Ai is the first element containing x. Since Ai is open, there exists

an open ball B(x, 1/n) ⊂ Ai for some n. By definition of Sn(Ai), B(x, 1/n) ∈ Sn(Ai).

It follows that x ∈ Sn(Ai). Given Ai is the first element containing x, removing the

other Ai will not remove x. Since En(Ai) is obtained by expanding Tn(Ai), it follows

x ⊂ En(Ai) ∈ En ⊂ E . This concludes E covers X.

Definition 16. Let A be a subset of a topological space X. A is said to be a Gδ set if there

exists a countable collection of opens sets On of X such that A = ∩n∈NOn
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Lemma 17. Every regular space with a basis that is countably locally finite is normal and

every closed set in such space is a Gδ-set.

Proof. Let X be such a space, and let B be a countably locally finite basis. First, we

show that for any open set V ⊂ X there exists a countable collection Un of open sets

such that

V =
⋃

n∈N

Un =
⋃

n∈N

Un.

Given that basis B is countably locally finite, there exists a locally finite collection Bn

such that B =
⋃

n∈N Bn.

Let Cn be the collection of B ∈ Bn such that B̄ ∈ V. Cn is locally finite as a sub-

collection of Bn.

Let

Un =
⋃

B∈Cn

B

From the locally finiteness, it follows that

Un =
⋃

B∈Cn

B.

B ⊂ V implies
⋃

Un ⊂ ⋃
Un ⊂ V. Conversely, ∀x ∈ V, by regularity x belongs to

some B such that B ∈ V. Hence x ∈ Un ⊂ ⋃
Un which concludes the equality.

Next we show every closed set in X is a Gδ-set.

Let C be a closed set. There exists an open set V in X that is the complement of C in X

i.e. C = X − V. From the first step, there exists a collection of open sets Un such that

V =
⋃

n∈N Un. Hence

C = X −
⋃

n∈N

Un

C =
⋂

n∈N

(X − Un)

is a Gδ-set as a countable intersection of open sets.

The final step consists in showing X is normal. Consider two closed sets A and B in X.

The sets X − A and X − B are open sets and from step one there exists a collection of
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open sets {Un}n∈N such that

⋃
n∈N

Un =
⋃

n∈N

Un = X − B

Then {Un}n∈N covers A and each Un is disjoint from B. We can define {Vn}n∈N which

also covers B and each Vn is disjoint from A. The remaining is exactly the same as in

the case of a regular space with a countable basis (theorem 5).

We define

U′
n = Un −

n⋃
i=1

Vi and V′
n = Vn −

n⋃
i=1

Ui

U′ =
⋃

n∈N

U′
n and V′ =

⋃
n∈N

V′
n.

The sets U′ and V′ are disjoint open sets that contain respectively the closed sets A and

B.

Lemma 18. Let X be a normal space and A, a closed Gδ set in X. There exists a continuous

function f : X −→ [0, 1] such that f (x) = 0 for x ∈ A and f (x) > 0 ∀x /∈ A.

Proof. Let A be a closed Gδ-set. It follows that there exists a countable collection

of open sets On, n ∈ N such that A = ∩n∈NOn. For each n, we construct a function

fn : X −→ [0, 1] such that fn vanishes on A and fn ≡ 1 on X −On. Let f = ∑n∈N
fn
2n .

Clearly f vanishes on A and f ≡ 1 on X −∪n∈NOn.

To show f is continuous, recall, fn ≤ 1 ∀ n. It follows that f ≤ ∑n∈N
1

2n which is

absolutely convergent. f is therefore continuous.

Theorem 19 (Nagata-Smirnov Metrization Theorem). A space is metrizable if and only

if it is regular and has a basis that is countably locally finite.

Proof. We will prove this in two steps. In step 1 we will assume X is metrizable

and show X is regular and has a basis that is countably locally finite. Step 2 will prove

the converse.

Step 1: Let X be metrizable, with a metric d. We will show X is regular and has countable

locally finite basis

To prove the regularity of X, we recall theorem 7 that states that every metrizable

space is normal. Also, metrizable spaces are Hausdorff since ∀x, y ∈ X such that
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d(x, y) = r > 0, there exists open disjoints balls B(x, r/3) and B(y, r/3). In Hausdorff

spaces, normality implies regularity. Therefore X is regular.

To prove X has a countable locally finite basis, let An be a covering of X by open balls

of radius 1/n. By lemma 15, there exists a locally finite refinement Bn of open balls of

diameter at the most 2/n (since each ball of Bn is in a ball of An of radius at the most

1/n ) covering X. Let B :=
⋃

n∈N Bn. B is countably locally finite since each Bn is

locally finite. We only need to show it is a basis for X.

To prove B is a basis, we show for any arbitrary ball B(x, ϵ), there exists an element B

of B containing x such that the ball B ⊂ B(x, ϵ). We choose n large enough such that

1/n < ϵ/2. Given Bn covers X, there is a B in the cover Bn that contains x and have

a diameter at the most 2/n < ϵ. It follows that B ⊂ B(x, ϵ) which implies that B is a

basis of X that is countably locally finite.

Step 2: To prove the converse, show that any regular space with countably locally finite basis is

normal and the remaining follows from the second version of the proof of Urysohn metrization

theorem.

Assume X is regular with a countable locally finite basis B. It follows from lemma 17

that X is normal and every closed set is a Gδ set in X. We show X is metrizable by

embedding X in a metric space (RJ , ρ̄) for some countable index set J.

First, we prove the existence of a sequence of continuous functions fn : X −→ [0, 1/n],

such that ∀x0 ∈ X, and for each open neighborhood U of x0, f (x0) > 0 on U but van-

ishes outside U. In other words the functions separate points from closed sets.

Let B = ∪n∈NBn where each collection Bn is locally finite. For each n and for each el-

ement B in Bn, we choose a function fn,B : X −→ [0, 1/n] such that fn(x) > 0 ∀x ∈ B

and vanishes outside B. Let x0 ∈ X and U be a neighborhood of x0. There exists a

B ∈ Bn for some n ∈ N, such that x0 ∈ B ⊂ U such that fn,B(x0) > 0 and vanishes

outside B therefore vanishes outside U.

Let J be the set of all pair (n, B) such that B ∈ Bn and define F : X −→ [0, 1]J such

that F(x) = ( fn,B(x))(n,B)∈J . From theorem 11(Embedding Theorem), F is an embedding

of X into [0, 1]J with respect to the product topology. As proven in the version 2 of the

Urysohn metrization theorem, F is continuous, injective and F is unto the image space

Z = F(X). All these results except the continuity are preserved when we move to the

11



finer (larger) topology (RJ , ρ̄) with ρ̄ being the uniform metric.

The only remaining step is to prove F is continuous which does not follow from the

continuity of each fn,B since we are no longer in the product topology. Recall that the

uniform metric is defined by ρ̄(x, y) = supn∈N{|xn − yn|} where x = (x1, x2, · · · ) and

y = (y1, y2, · · · ). To prove F is continuous, we show ∀x0 ∈ X and ∀ϵ > 0, there exist a

neighborhood W of x0, such that

x ∈ W =⇒ ρ̄(F(x0), F(x)) < ϵ

For a fixed n, we choose a neighborhood Un of x0 that intersects all but finitely many

elements of the collection Bn. As B ranges over Bn all but finitely many fn,B are identi-

cally 0. Because each function fn,B is continuous, we can choose a neighborhood V of

x0 such that fn,B for B ∈ Bn varies by at most ϵ/2 on V. Next we choose such neigh-

borhood V of x0 and choose N ∈ N such that 1/N ≤ ϵ/2 and define W = ∩N
n=1Vn.

W is the desired neighborhood. The proof follows verbatim from the continuity of F in

the second version of the proof of Urysohn metrization theorem (theorem 8) .

0.4 Smirnov Metrization Theorem

As an equivalent statement of the Nagata-Smirnov theorem, the Smirnov metriza-

tion theorem provides a condition that extends the property of local metrizability to

the metrizability of the whole topological space. Paracompactness, a weaker form of

compactness and local metrizability are necessary and sufficient conditions for metriz-

ability. We define some key notions needed for the proof.

Definition 20. A space X is said to be compact if every open cover has a finite open subcover.

Definition 21. A space X is said to be paracompact if every open cover has a locally finite

open refinement.

From the definitions, it is clear that the difference between compactness and para-

compactness is the fact that paracompactness is a local property. Also, paracompact-

ness require a refinement, which can be taken from any subsets of the elements (sets)

of the cover whereas subcover only refers to picking some elements of the cover. It

12



follows that every subcover is a refinement while refinements are not necessarily sub-

covers. It is important to note that some books add an extra condition to the definition

of paracompactness, the space must be Hausdorff. Our definition of paracompact here

does not make this a requirement

As established in section 1 that normality is a necessary necessary condition, it is im-

portant to investigate if there is some connection between paracompacteness and nor-

mality. Here comes our next theorem.

Theorem 22. Every Paracompact Hausdorff space is normal.

Proof. We begin by proving regularity. Let x be an arbitrary point in a paracompact

Hausdorff space X and F ⊂ X be a closed set. X − F is open since F is closed. Given

that X is Hausdorff, ∀a ∈ F, there exists an open set Ua ∈ X whose closure is disjoint

with x. The collection of open sets (Ua)a∈F together with the open set X − F is an open

cover X. From paracompacteness, there is a locally finite open refinement C covering

X. Let D be the collection of elements of C that intersect F; D is a collection of open

sets that covers F.

Let D be an element of D. D belongs to Ua for some a ∈ F. It follows that D is disjoint

from x since Ua is disjoint from x. Let V = ∪D∈DD. V is an open set containing F and

the closure of V denoted by V is disjoint from x since the closure of each D ∈ D is

disjoint from x which concludes X is regular.

To prove normality, we repeat exactly the same process replacing Hausdorff by regu-

larity and repeating the point x by another closed set.

Theorem 23. Every metrizable space is paracompact and Hausdorff.

Proof. First, every metrizable space is Hausdorff. Given a metric d and any arbi-

trary points a, b such that d(a, b) = r > 0, there exist disjoint open balls B(a, r/4) and

B(b, r/4).

By lemma 15, given the space is metrizable, every cover has a refinement that is locally

countably finite. The locally finite refinement is equivalent to paracompactness.

Theorem 24 (Smirnov Metrization Theorem). A topological space is metrizable if and

only if it is locally metrizable, paracompact, and Hausdorff.

13



Proof. Assume X is metrizable. It follows X is locally metrizable. From theorem 23

X is paracompact and Hausdorff.

To prove the converse, assume X is metrizable and paracompact and Hausdorff. Theorem 22

guarantees the normality of X . We only need to show X has a basis that is count-

ably locally finite and conclude by the the Nagata-Smirnov Metrization theorem that X is

metrizable.

Assuming X is a locally metrizable i.e ∀x ∈ X, there exists an open neighborhood Ux

of x that is metrizable. There exists on Ux a metric dx, allowing us to define define

open balls {B(x, ϵ) := {y ∈ X | dx(x, y) < ϵ}.

Let define

Cn,x = {B(y, 1/n) ⊂ Ux | y ∈ Ux} and An =
⋃

x∈X
Cn,x.

An covers X. From paracompactness of X, we can find a refinement Dn of An that is

locally finite. Letting D = ∪n∈NDn, we see that D is countably locally finite, being a

countable union of locally finite collections. Finally, we need to show that D is a basis

for X. This is to show that for any arbitrary x ∈ X and any open neighborhood Ox of

x, there exists D ∈ D such that x ∈ D ⊂ Ox.

x ∈ Ox and the space X being metrizable i.e a open neighborhood Ux of x that is

metrizable. Ox
⋂

Ux is open and metrizable therefore it contains an open ball B(x, 1/n) ∈

An for some very large n ∈ N. Given Dn is a refinement of An, there exists an open

set D ∈ Dn that contains x. Hence x ∈ D ⊂ B(x0, 1/n) ⊂ Ox
⋂

Ux ⊂ Ox where

D ∈ Dn ⊂ D which concludes D is a basis for X.

Conclusion

Following the the proofs in [1], we have proven the three most important metriza-

tion theorems of topological spaces. The Urysohn Metrization theorem provides a

sufficient condition while the Nagata-Smirnov theorem and Smirnov theorem provide

necessary and sufficient conditions on metrizability.
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